LeetCode 292. Nim游戏
- 游戏信息
- 发布时间:2025-05-11 08:02:25

简单题, 巴什博弈 。
显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。
对于巴什博弈,那么我们规定,如果最后取光者输,那么又会如何呢?
(n-1)%(m+1)==0则后手胜利
先手会重新决定策略,所以不是简单的相反行的
威佐夫博弈(Wythoff's game):有两堆各若干个物品,两个人轮流从任一堆取至少一个或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。
那么任给一个局势, (a,b),怎样判断它是不是奇异局势呢?我们有如下公式:
指的是这样的一个博弈游戏,目前有任意堆石子,每堆石子个数也是任意的,双方轮流从中取出石子,规则如下:
1)每一步应取走至少一枚石子;每一步只能从某一堆中取走部分或全部石子;
2)如果谁取到最后一枚石子就胜。
判断当前局势是否为必胜(必败)局势:
把所有堆的石子数目用二进制数表示出来,当 全部这些数按位异或 结果为0时当前局面为必败局面,否则为必胜局面;
有一堆个数为n的石子,游戏双方轮流取石子,满足:
1)先手不能在第一次把所有的石子取完;
2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。
约定取走最后一个石子的人为赢家,求必败态。
这个游戏叫做斐波那契博弈,肯定和 斐波那契数列 : 有密切的关系。如果试验一番之后,可以猜测: 先手胜当且仅当n不是斐波那契数。换句话说,必败态构成斐波那契数列。